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I. ITER Plasma Parameters at Normal
Operation and ELMs

 Used parameters:
           Normal operation - Physics Phase

• R = 6 m,   a=2 m,   k=2,  δ=0.24

• Bθ=5 T,   Iθ=22  MA,   Zeff≈1 (in project- Zeff≈1.5) ,

• ne=1014 cm-3,  Te=Ti=T0=10-20 keV ,

• Qthermal = Q0= 1-2  GJ,
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ITER ELMs

 The ELM instability results from an overlap of many MHD
modes.

 There are many types of ELMs  varying from machine to
machine (up to 5 in the NSTX).

 Plasma energy losses during ELMs varies up to (10-30)%.

 May be only pedestal plasma is expelled during ELMs: if MHD
instability propagates into the hot core (inside the thermal
barrier) it results in a disruption.

 Thus, energy, QELM,  and particles, NELM,  expelled during ELM
with magnitude, ξ, is assumed as loss of outer regions
containing the given QELM  and NELM.
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What part of core plasma comes to SOL
during ELM?

 The energy, QELM, and particles,
NELM,  expelled out during ELM
with magnitude, ξ, is assumed
as loss of  outer ring containing
the given QELM and NELM
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II. Cloud of mixture of coming DT plasma and
vaporized carbon plasma

The main consequence of ELMs development:
 plasma coming from the pedestal has low temperature (T≈1 keV),
 thus cloud above the divertor plate  surface consists mostly from DT plasma
 This DT cloud is kept the vaporized carbon  plasma nearby the surface
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Beryllium Erosion & Expansion
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III. Dynamics of Carbon Plasma in the
Private Flux Region

Assumption:
 Carbon plasma is lost due to diffusion across the Separatrix

into the  Private Flux Region (PFR)
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Impurity Transport

  Diffused carbon plasma is well magnetized and its dynamic can
be described by the Hall approximation assuming quasistationary
motion with velocity, V⊥.  Substituting V⊥ in mass conservation
equation one can obtain nonlinear diffusion equation.

   Mass conservation law:
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Density at the PFR
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 Carbon plasma propagates with sharp front because
effective diffusion coefficient depends on density
–diffusion is nonlinear
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IV. Summary
1. The plasma cloud during ELMs consists mostly of DT plasma.

2. This DT plasma with high temperature (TDT = 40-60 eV) confine carbon
plasma below with lower temperature (TC=10-20 eV).

3. The carbon plasma can diffuse across Separatrix into the private flux
region and be the main mechanism of the carbon vapor leakage.

4. Carbon impurities reaches the X-point in time of 100 ms much longer
than ELMs time of 0.1-1 ms and could penetrate into core plasma.

5. Contamination of core plasma is governed by pumping and
absorption of vapor plasma by components in PFR.

6.  Need more detail analysis for the interaction of eroded material with
PFR materials, pumping, and bulk plasma.


